Conservation of Meningococcal Antigens in the Genus Neisseria

نویسندگان

  • Alessandro Muzzi
  • Marirosa Mora
  • Mariagrazia Pizza
  • Rino Rappuoli
  • Claudio Donati
چکیده

Neisseria meningitidis, one of the major causes of bacterial meningitis and sepsis, is a member of the genus Neisseria, which includes species that colonize the mucosae of many animals. Three meningococcal proteins, factor H-binding protein (fHbp), neisserial heparin-binding antigen (NHBA), and N. meningitidis adhesin A (NadA), have been described as antigens protective against N. meningitidis of serogroup B, and they have been employed as vaccine components in preclinical and clinical studies. In the vaccine formulation, fHbp and NHBA were fused to the GNA2091 and GNA1030 proteins, respectively, to enhance protein stability and immunogenicity. To determine the possible impact of vaccination on commensal neisseriae, we determined the presence, distribution, and conservation of these antigens in the available genome sequences of the genus Neisseria, finding that fHbp, NHBA, and NadA were conserved only in species colonizing humans, while GNA1030 and GNA2091 were conserved in many human and nonhuman neisseriae. Sequence analysis showed that homologous recombination contributed to shape the evolution and distribution of both NHBA and fHbp, three major variants of which have been defined. fHbp variant 3 was probably the ancestral form of meningococcal fHbp, while fHbp variant 1 from N. cinerea was introduced into N. meningitidis by a recombination event. fHbp variant 2 was the result of a recombination event inserting a stretch of 483 bp from variant 1 into the variant 3 background. These data indicate that a high rate of exchange of genetic material between neisseriae that colonize the human upper respiratory tract exists. IMPORTANCE The upper respiratory tract of healthy individuals is a complex ecosystem colonized by many bacterial species. Among these, there are representatives of the genus Neisseria, including Neisseria meningitidis, a major cause of bacterial meningitis and sepsis. Given the close relationship between commensal and pathogenic species, a protein-based vaccine against N. meningitidis has the potential to impact the other commensal species of Neisseria. For this reason, we have studied the distribution and evolutionary history of the antigen components of a recombinant vaccine, 4CMenB, that recently received approval in Europe under the commercial name of Bexsero®. We found that fHbp, NHBA, and NadA can be found in some of the human commensal species and that the evolution of these antigens has been essentially shaped by the high rate of genetic exchange that occurs between strains of neisseriae that cocolonize the same environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In silico Homology Modeling and Epitope Prediction of NadA as a Potential Vaccine Candidate in Neisseria meningitidis

Neisseria meningitidis is a facultative pathogen bacterium which is well founded with a number of adhesion molecules to facilitate its colonization in human nasopharynx track. Neisseria meningitidis is a major cause of mortality from sever meningococcal disease and septicemia. The Neisseria meningitidis adhesion, NadA, is a trimeric autotransporter adhesion molecule which is involved in cell ad...

متن کامل

Pathogenic Neisseriae: Gonorrhea, Neonatal Ophthalmia and Meningococcal Meningitis

The family Neisseriaceae consists of Gram-negative aerobic bacteria from fourteen genera (Bergey's 2001), including Neisseria, Chromobacterium, Kingella, and Aquaspirillum. The genus Neisseria contains two important human pathogens, N. gonorrhoeae and N. meningitidis. N. gonorrhoeae causes gonorrhea, and N. meningitidis is the cause of meningococcal meningitis. N. gonorrhoeae infections have a ...

متن کامل

Expression and purification of functional recombinant meningococcal transferrin-binding protein A.

Pathogenic bacteria of the genus Neisseria have a siderophore-independent iron-uptake system reliant on a direct interaction between the bacterial cell and human transferrin (hTf), a serum protein. In the meningococcus, this uptake system is dependent on two surface-exposed, transferrin-binding proteins (Tbps), TbpA and TbpB. TbpA is highly conserved among meningococcal strains, and is thought ...

متن کامل

Identification of Neisseria Meningitidis in Patients with Suspected Meningitis: a Study in Imam Reza Hospital, Kermanshah City, Iran, 2013

Background & Aims: Neisseria meningitidis is bacteria fastidious, and the main causes of meningitis and acute sepsis. Appropriate treatment depends on accurate and timely diagnosis. This study aimed to identify Neisseria meningitidis infection in samples of cerebrospinal fluid (CSF) in patients with suspected meningitis. Methods: In this study, 198 samples of cerebrospinal fluid of patients wit...

متن کامل

Putative vaccine antigens from Neisseria meningitidis recognized by serum antibodies of young children convalescing after meningococcal disease.

Serum samples from 31 children < or = 4 years old who were convalescing after meningococcal disease were used in a quantitative hybridization assay to establish antibody reactivity to 94 candidate meningococcal vaccine antigens. Genes encoding 22 of 23 strongly recognized proteins were found in > or = 94% of the patients' meningococcal strains, and most were also widely prevalent in Neisseria l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013